

Prof. Cafer T. Yavuz

Grad School of EEWS, Dept. of Chemistry KAIST Email: <u>yavuz@kaist.ac.kr</u> <u>www.caferyavuz.com</u> <u>www.PorousPolymers.com</u>

Chemistry in the confined spaces of porous polymers and the rough road for porous diamond

Tuesday, May 3Bldg 1011:15 pmSeminar room on the 1st floor

Porous polymers with rigid organic structures through a covalent backbone feat ure permanent voids that can be used for chemical activities. We have develope d a family of nanoporous (pore size < 100 nm) covalent organic polymers (COPs), which show significant capacities and selectivities for gases (e.g. CO_2), and wat er contamination (e.g. heavy metals). We've shown that azo (N=N) bearing COP-68 show lack of N₂-philicity by increasing temperature, in other words N₂-phobi city, leading to very high CO₂/N₂ selectivities. Under high pressures COP-1 show s a record high capacity of 5.6 g/g CO₂ uptake at high pressures. COP-83 has a capacity of 5 mmol/g at 298 K and 1 bar, and COP-97 shows an uptake of 8 % (w/w) CO_2 in 2 minutes from a simulated flue gas mixture. More recently, we intr oduced ethylene diamines on the walls of COP-115 through bromination interm ediates, providing tunability in binding energy. In COP-122, we controlled spheri cal morphology and converted nitrile pendant groups to amines for further graft ing chemistry. COP-150 is scalable into kg and provides a hydrocarbon backbon e for post-modification. Order in porous polymers can be achieved through dyn amic covalent chemistry, a source of instability. We've sought to use irreversible binding through charged substituent guiding for systems like porous diamond. After numerous failed attempts, our approach is now to lock directional growth in order to achieve ordered assembly.

References: Patel et al., *Chem. Mater.* 26 (23), 6729–6733 (2014), *Chem. Eur. J.*, 2 0, 772-780, (2014), *Nature Commun.*, 4:1357, (2013), *Adv. Funct. Mater.*, 23, 2270–2276 (2013), *J. Mater. Chem.*, 22, 8431-8437 (2012), *Chem. Comm.*, 48 (80), 9989–9991 (2012).

You are cordially invited to attend!