

Dr. Yogendra Kumar Mishra

Group Leader: Functional Nanomaterials Chair Institute for Materials Science Kiel University in Germany

vkm@tf.uni-kiel.de

Flame Inspired Nanostructuring: Soft Ceramics to Advanced 3D Nanocarbons

Tuesday, AUG 29 Bldg. 101

4 PM Seminar room on the 1st floor

The recently introduced flame transport synthesis method offers unique nanostructuring avenues for different metal oxides ranging from quasi 1D nanowires to porous 3D interconnected ceramics networks.[1] This flame based strategy allows direct integration of ZnO nano- and microstructures and their interconnected networks on the desired substrates for various applications, e.g., whispering gallery modes, photocatalysis or nanosensing (UV/gases), and piezotronic devices, etc.[1-5] The unique 3D shape of the ZnO tetrapods facilitates them to be used as efficient fillers for fabricating advanced composites, e.g., self-reporting/healing composites[6] and many others. The 3D porous, flexible and conducting network from ceramic materials are now-a-days very important because of their technological relevance and the developed flame method offers desired synthesis of various ZnO and SnO2 nanonetworks.[1] The flame grown ZnO tetrapods structures exhibit very low cytotoxicity and they have shown strong potentials against antiviral and in other biomedical applications.[7] These porous networks can be decorated with other nanomaterials for designing further hybrid multifunctional materials^[2] and can also be used as sacrificial templates to grow new nanomaterials from carbon, for example 3D Aerographite and CNTT networks.[8-10] An overview about the new possible nanostructuring opportunities by the flame method will be briefly presented including some application examples.

References:

[1]Particle & Particle Systems Characterization 30, 2013, 775-783

- [3]ACS Applied Materials & Interfaces 7, 2015, 14303–14316 [5] ACS Omega 2, 2017, 2985-2993 [7] Journal of Immunology 196, 2016, 4566-4575
- [9] Nature Communications 8, 2017, 14982

You are cordially invited to attend!

^[2] Advanced Functional Material 27, 2017, 1604676

^[4]Advanced Materials 26, 2014, 1541-1550

^[6] Advanced Materials 25, 2013, 1342-1347

^[8] Advanced Materials 24, 2012, 3486-3490

^[10]Nature Communications 2017 (Under Review)